Using Association Mapping to Identify Fusarium Head Blight Resistance QTL within Contemporary Barley Breeding Germplasm

Jon Massman, Blake Cooper, Rich Horsley, Stephen Neate, Ruth Dill-Macky, Shiaoman Chao, Yanhong Dong, Paul Schwarz, and Kevin P. Smith

Barriers to MAS in Barley

- Trait phenotype easy to score
- Marker Technology
- Use of "un-adapted" parents for QTL mapping
- Linkage drag
- Marker doesn't have predicted value

Association mapping within breeding germplasm may be a way to overcome some of the barriers between mapping and breeding

Benefits of Association Mapping

- Not restricted to bi-parental populations
- Test multiple alleles at a time
- More appropriate estimate of allelic effects
- Use data routinely generated in breeding
 - •Alleles identified are segregating in breeding populations
 - Can quickly utilize the results of mapping for improvement

Bi-parental vs Association Mapping Populations

Mapping Population

(4 programs) x (96 lines/ year) x (2 years) = 768 lines total

<u>Breeders</u>	<u>Program</u>	Row type	
Kevin Smith	Minnesota (MN)	6	
Blake Cooper	Busch Ag (BA)	2 & 6	
Rich Horsley	N. Dakota (N2)	2	
Rich Horsley	N. Dakota (N6)	6	

Mapping Sets

# of lines	<u>Program</u>
384	MN, BA, N2, N6
224	MN, BA, N6
160	BA, N2
384	MN, BA, N2, N6
243	MN, BA, N6
141	BA, N2
	384 224 160 384 243

Fusarium Evaluation

Each line was evaluated at four locations in a RCB with two reps

Distribution of SNP Markers

BOPA1

1414 mapped SNP Markers

CAP I 1173

CAP I 6 564

CAPI 2 1113

CAP II 1127

CAP II 6 614

CAP II 2 1067

Variation for FHB and DON

Population Structure CAP I

FHB QTL Mapping

DON QTL Mapping

Summary of FHB and DON QTL Identified with Two Independent Populations

•QTL	identified	in a mapping set
from	both CAP	I and CAP II

- Resolution is variable and can be more precise than seen in biparental mapping populations
- •r² values are very small which may reflect the underlying genetic architecture of the traits

Trait	Chrom	сМ	bin	r ²
FHB	2H	50-56	6-7	0.010
FHB	4H	24-36	4-7	0.020
FHB	6H	42-61	5-7	0.011
FHB	6H	124-127	?-14	0.017
		30 00 000 00 00 00 00 00 00 00 00 00 00		
DON	1H	88	9-12	0.007
DON	2H	125-132	11-13	0.020
DON	3H	52-65	4-7	0.027
DON	4H	3	1	0.009
DON	4H	21-36	2-5	0.015
DON	4H	40-61	5-7	0.008
DON	5H	190-192	13-15	0.012
DON	6H	42-67	5-7	0.007

Location of Resistant Alleles for DON QTL in Breeding Programs

Frequency Resistant Allele within

Program

		_	i iografii			
Trait	Chrom	сМ	MN	BA	N2	N6
DON	1H	88	1.0	0.90	0.74	0.99
DON	2H	125-132	0.54	0.55	0.64	0.12
DON	3H	52-65	0.19	0.57	0.95	0.0
DON	4H	3	0.17	0.49	0.98	0.02
DON	4H	21-36	0.33	0.58	0.99	0.02
DON	4H	40-61	0.29	0.32	0.47	0.51
DON	5H	190-192	0.85	0.81	0.95	0.54
DON	6H	42-67	0.02	0.36	0.73	0.10

Conclusions

- Identified new and previously described QTL regions for FHB and DON
- QTL resolution was variable and in some cases QTL locations were more precise then in a bi-parental mapping study
- Very small effect QTL were identified which may reflect the underlying genetic architecture of complex traits

Acknowledgments

Barley CAP collaborators

Barley Project: Carol Powers, Ed Schiefelbein,

Guillermo Velasquez & Karen Beaubien

SMALL GRAINS INITIATIVE

Minnesota Agricultural Experiment Station

U.S. Wheat & Barley Scab Initiative

Questions?